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Abstract Much effort has been invested in developing snow models over several decades, resulting in a
wide variety of empirical and physically based snow models. For the most part, these models are built on
similar principles. The greatest differences are found in how each model parameterizes individual processes
(e.g., surface albedo and snow compaction). Parameterization choices naturally span a wide range of com-
plexities. In this study, we evaluate the performance of different snow model parameterizations for hydro-
logical applications using an existing multimodel energy-balance framework and data from two well-
instrumented alpine sites with seasonal snow cover. We also include two temperature-index snow models
and an intensive, physically based multilayer snow model in our analyses. Our results show that snow mass
observations provide useful information for evaluating the ability of a model to predict snowpack runoff,
whereas snow depth data alone are not. For snow mass and runoff, the energy-balance models appear
transferable between our two study sites, a behavior which is not observed for snow surface temperature
predictions due to site-specificity of turbulent heat transfer formulations. Errors in the input and validation
data, rather than model formulation, seem to be the greatest factor affecting model performance. The three
model types provide similar ability to reproduce daily observed snowpack runoff when appropriate model
structures are chosen. Model complexity was not a determinant for predicting daily snowpack mass and
runoff reliably. Our study shows the usefulness of the multimodel framework for identifying appropriate
models under given constraints such as data availability, properties of interest and computational cost.

1. Introduction

Many snow models have been developed with varying degrees of complexity. The choice of a snow model
should depend on the intended application. From the perspective of hydrological forecasting, model
requirements differ from those of, for example, avalanche warning and climate modeling. To make well-
informed model choices, we need to evaluate models using observational data and model skill measures
relevant for the specific purpose. In the present literature, many studies show developments and improve-
ments of snow models including validation against observational data [e.g., Dutra et al., 2010; Shrestha et al.,
2010; Tobin et al., 2013; Vionnet et al., 2012]. The purpose of such studies can be to evaluate newly devel-
oped models [e.g., De Michele et al., 2013; Tuteja and Cunnane, 1999] or introduce more accurate process
representations in existing models [e.g., Wever et al., 2014]. However, studies such as those mentioned
above often lack comparisons against the range of already existing models making it difficult to judge
whether the proposed improved model is best suited for a specific purpose. Additionally, for practical appli-
cations, including too many processes or very complex parameterizations may be counterproductive since
often the number of undefined parameters increases, which can lead to overfitting and poor predictive
capabilities of the model [Cox et al., 2006]. Additionally, the computational time might be increased without
much gain in model performance.

Studies evaluating single models often lack an appropriate benchmark and judging acceptable model per-
formance from skill indices is often subjective [Cox et al., 2006; Seibert, 2001]. Comparing several snow mod-
els against observations reveals their performance relative to each other. Thus, model intercomparison
projects naturally include a sort of benchmark for performance if the necessary range of models is included.
Some studies compare a large number of snow models with the intention of relating model performance
and behavior to differences in model structure and setup [e.g., Etchevers et al., 2004; Rutter et al., 2009; Slater
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et al., 2001]. Such studies show that differences in model efficiency depend on how the models represent,
for example, snow albedo, fractional snow cover, and turbulent surface heat exchanges (see Essery et al.
[2013] and Rutter et al. [2009] for detailed summaries of earlier snow model intercomparison projects). How-
ever, such comparisons remain difficult to interpret since the models often differ greatly between each
other complicating the analysis of individual processes influencing the model performance. Most likely, a
more informative approach than comparing different models is to deploy a multimodel framework that
uses different representations for individual processes in all possible combinations [e.g., Clark et al., 2011;
Essery et al., 2013]. A multimodel framework allows us to evaluate how different parameterizations for one
process influence the simulation performance under an otherwise equal model setup. For example, we can
assess how different model parameterizations describing snow albedo influence the ability of a model to
reproduce snowpack runoff. However, neither the snow model intercomparison projects nor the multimo-
del framework studies have yet focused on finding snow models appropriate for hydrological forecasting
specifically.

In another branch of studies, the skill of models predicting stream flow has been assessed by including dif-
ferent snow routines [Franz et al., 2008; Kumar et al., 2013; Zeinivand and De Smedt, 2009]. Those studies
show varying results, for example, that increasing snow model complexity improves the runoff simulations
[Warscher et al., 2013] whereas other studies do not find such a relationship [Lehning et al., 2006; Zappa
et al., 2003]. From the perspective of hydrological forecasting, evaluating runoff models appear more rele-
vant than validating the snow routines alone. However, validating the combination of a runoff routing
model and snow routine may mask deficiencies in the snow simulations due to compensating mechanisms.
Thus, isolated evaluations of snow models provide additional information to studies considering complete
hydrological models.

In this study, we evaluate the behavior and performance of point snow models, often referred to as one-
dimensional models. In particular, we focus on assessing their usefulness for hydrological applications. For
this a purpose, we consider predictions of snow mass and snowpack runoff to be the most important varia-
bles. In our evaluation, we include a large range of existing snow models, spanning from simple empirical
models [e.g., Rango and Martinec, 1995] to intermediate complexity energy-balance models [e.g., Essery
et al., 2013] to the latest snow-physics models [e.g., Wever et al., 2014]. For our analysis, we use high quality
input and validation data to examine the highest performance we may expect from the models.

2. Study Site and Data

We use published data sets from two field sites in the European Alps - Weissfluhjoch and Col de Porte -
where all necessary meteorological and validation variables have been measured over a long period. The
site Weissfluhjoch is situated at high altitude (2540 m) in Switzerland (46.82�N, 9.81�E) and Col de Porte is
located at midelevation (1325 m) in France (45.30�N, 5.77�E). The data record for Weissfluhjoch used here
spans from 9 October 1997 to 1 July 2010 and for Col De Porte from 18 December 1994 to 4 June 2011. For
those periods, both study sites show similar annual precipitation sums of approximately 1800 mm/yr. Dur-
ing the snow-covered period, the average air temperature is lower at Weissfluhjoch (23.0�C) than Col De
Porte (0.2�C). The relative humidity is also lower (69.3%) at the higher elevation site Weissfluhjoch than at
the midelevation site Col de Porte (82.3%). On the other hand, wind speeds are greater at Weissfluhjoch
(2.4 m/s) than at Col de Porte (1.2 m/s). At Weissfluhjoch, the maximum snow depth per year varies
between approximately 180 and 360 cm over the study period and at Col de Porte between approximately
60 and 200 cm. The snow cover lasts longer at Weissfluhjoch (roughly October to July) than at Col de Porte
(roughly December to April). The snow cover at Weissfluhjoch typically shows a distinct accumulation
period before melting starts, whereas midwinter melt events are common at Col de Porte.

At both sites, the following meteorological variables required for input to the snow models were measured:
air temperature, relative humidity, wind speed, precipitation using a heated gauge, incoming longwave and
shortwave radiations. In this study, we use the identical model input data as Wever et al. [2014]. Details
about the technique for partitioning precipitation into rain and snowfall and the method for undercatch
correction are described in Wever et al. [2014] for Weissfluhjoch and Morin et al. [2012] for Col de Porte. The
following validation variables have been observed at both sites: snow lysimeter runoff, snow mass (i.e.,
snow water equivalent), snow depth, and snow surface temperature. In some cases, the same variable has
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been measured by different methods at the same location. Both sites are equipped with snow lysimeters
having a 5 m2 surface area of the collector, and at Col de Porte, there is also a 1 m2 lysimeter. For the model
evaluation, we mainly use data from the larger lysimeters since those typically provide more reliable record-
ings than lysimeters with small collectors [Kattelmann, 2000]. Data from the smaller collector provided a
gauge of runoff variability at Col de Porte. The lysimeter at Weissfluhjoch was malfunctioning during the
winters 1999/2000 and 2004/2005 [Wever et al., 2014] which were omitted from our analysis. Snow mass
was measured manually at both Col de Porte (weekly) and Weissfluhjoch (biweekly). For both sites, we use
the automatic measurements of snow depth. At Weissfluhjoch, snow surface temperature was obtained
from an infrared sensor and for Col de Porte, this variable was computed from observed outgoing longwave
radiation. We only analyzed the goodness of fit between the simulated and observed runoff, and snow sur-
face temperature during periods when any of the models and the observed snow depth exceeded 5 cm.
Thus, the snow-free summer months do not influence the goodness-of-fit measures presented below. See
Morin et al. [2012], Schmucki et al. [2014], and Wever et al. [2014] for more details about all observations.

Note that the lysimeters used in this study do not include a soil column. Thus, they measure the runoff from
the snowpack directly without time delay. In the following, we mostly denote the observed snowpack run-
off simply as runoff for convenience.

3. Methods

3.1. Snow Models
We compare the performance and behavior of three different model types that differ in complexity, compu-
tation time, and data requirements. In this study, we separate the models into the following three
categories:

1. Temperature-index models which are mainly used in hydrological and glaciological applications [e.g.,
Hock, 2003; Huss et al., 2008].

2. Energy-balance models which have a wide variety of applications, such as in hydrology, land surface
schemes, and weather forecasting models [e.g., Shrestha et al., 2010; Zanotti et al., 2004].

3. Snow-physics models which are, for example, used for avalanche warning and hydrology [e.g., Bartelt and
Lehning, 2002; Lehning et al., 2006] as well as within snow research [e.g., Vionnet et al., 2012].

The two last categories both belong to the family of energy-balance snow models. However, the latter pre-
dict the microstructure of individual snowpack layers and give information about, for example, the mechan-
ical stability of the snowpack, whereas the former feature a simplified snowpack layering.

3.1.1. Temperature-Index Models (TI-CDDF/TI-VDDF)
The temperature-index model was run using daily inputs of air temperature and precipitation separated
into solid and liquid phases. In this study, we use two different options for this type of model structure. In a
first experiment, we use a constant degree-day factor and in a second experiment, we allow this parameter
to vary seasonally following Slater and Clark [2006]. That the degree-day factor varies during the season is
well documented from observations [Kuusisto, 1980]. Including this seasonal variability of the melt factor
should increase the temperature-index model performance compared to using a constant degree-day fac-
tor [Rango and Martinec, 1995]. The acronyms TI-CDDF and TI-VDDF are, respectively, used for the
temperature-index model using a constant degree-day factor and the model with a seasonally varying
degree-day factor. We additionally include a liquid water holding capacity in both models. The model
parameters, three for TI-CDDF and four for TI-VDDF, were calibrated for each site individually following the
methods presented by Kokkonen et al. [2006]. We used the Kling-Gupta efficiency [Gupta et al., 2009] as per-
formance measure for the calibration (see section 3.2 for details about this statistic). Parameters are cali-
brated using data from the first half of the modeling period and evaluated over the second half.
Subsequently, the calibration and evaluation periods are swapped to generate a complete, independent
model data set for validation. The training data consist of the manual snow mass observations. For Weiss-
fluhjoch, the runtime for this model is approximately 0.01 s/yr on a typical desktop computer.

3.1.2. Energy-Balance Models Represented in a Multimodel Framework (JIM)
JULES investigation model (JIM), a single snow model containing a multimodel framework [Essery et al.,
2013], was the energy-balance model used to evaluate models of intermediate complexity. The multimodel
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framework in JIM presents the user with a variety of methods for representing and modeling snow proc-
esses. The process representations vary in complexity. While some are highly parameterized and others not,
we will adhere to the nomenclature used in Essery et al. [2013] and refer to all model choices as ‘‘parameter-
izations.’’ Parameterization options are available for the following seven processes:

1. Snow compaction: The increase in snow density due to metamorphosis and weight of overlying snow.

2. New snow density: The influence of meteorological conditions on the size and shape of snowflakes deter-
mining the density of newly fallen snow.

3. Snow albedo: The variations in reflectivity of snow depending on grain types and the incident angle of
shortwave radiation.

4. Turbulent heat exchange: The turbulent exchange of heat and moisture between the snow and
atmosphere.

5. Snow cover fraction: The development of a patchy snow cover during melting influencing the averaged
energy-balance for a certain area. This process can be important even in point-scale modeling when
snow patches form adjacent to the model point [e.g., Granger et al., 2006]. In this study, where lysimeter
data with a spatial footprint are used to evaluate point model performance, patchiness extending to the
lysimeter evaluation area can additionally affect model evaluations if not accounted for.

6. Snow hydraulics: The process for routing liquid water through the snowpack.

7. Thermal conductivity of snow: The variations in thermal conductivity with snow density influencing the
heat flux through the snowpack.

For each of the seven processes, JIM provides three different options of parameterizations: a so-called physically
based option (numbered 0), an empirical option (numbered 1) and one simple option which either neglects
the process, represents it using a constant value or uses very simple empirical formulation (numbered 2). The
seven different processes and their three options of parameterizations are summarized in Table 1.

Table 1. Summary of Parameterizations Included in JIMa

Snow Compaction [Essery et al., 2013, section 4.1]
0 Physically based compaction rate depending on temperature, density, and overburden of snow 7
1 Empirical compaction rate depending on snow temperature 2
2 Constant snow density 1

New Snow Density [Essery et al., 2013, section 4.2]
0 Empirical function of air temperature and wind speed 4
1 Empirical function of air temperature 3
2 Constant new snow density 1

Snow Albedo [Essery et al., 2013, section 4.3]
0 Physically based parameterization depending on snow grain size 10
1 Empirical parameterization depending on snow surface temperature history 5
2 Empirical function of snow temperature 3

Turbulent Heat Exchange [Essery et al., 2013, section 4.4]
0 Obukhov length parameterization of adjustment for atmospheric stratification 5
1 Richardson number parameterization of adjustment for atmospheric stratification 3
2 Constant exchange coefficient 2

Snow Cover Fraction [Essery et al., 2013, section 4.5]
0 Empirical function of snow depth and surface roughness 1
1 Empirical tanh function of snow depth 1
2 Empirical linear function of snow depth 1

Snow Hydraulics [Essery et al., 2013, section 4.6]
0 Bucket model with liquid water capacity proportional to snow density 3
1 Bucket model with liquid water capacity proportional to snow porosity 1
2 Freely draining (i.e., the snowpack does not hold any liquid water) 0

Thermal Conductivity of Snow [Essery et al., 2013, section 4.7]
0 Empirical quadratic function of snow density 2
1 Empirical power function of snow density 2
2 Constant 1

aThe numbers to the left indicate the three different options of available parameterizations, and the numbers to the right show the
number of parameters used in each parameterization.
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JIM iterates through all possible configurations of parameterizations, omitting infeasible combinations
resulting in 1701 possible configurations. JIM solves the mass and energy exchanges for three individual
snow layers. The surface heat balance equation is solved analytically and the vertical temperature profile in
the snowpack is solved by the Crank-Nicolson method. For Weissfluhjoch, the runtime on a typical desktop
computer for this model varied between approximately 0.3 and 0.6 s/yr depending on configuration.

3.1.3. Complex Snow-Physics Model (SNOWPACK)
The most complex snow models are an extension of the standard energy-balance models that simulate the
internal structure of the snowpack in detail. To include this type of model in our evaluation, we assess the
performance of the multilayer SNOWPACK model here. The model provides a detailed physically based pro-
cess description for the surface energy balance and the heat flow through the snowpack [Lehning et al.,
2002]; the internal snowpack microstructure, expressed by grain size, grain shape, bond size, sphericity, and
dendricity [Lehning et al., 2002]; snow settling [Bartelt and Lehning, 2002]; and liquid water flow [Wever et al.,
2014]. When using the recently introduced solver for the Richards equation for snow, as in this study, execu-
tion times are approximately 190 s/yr on a typical desktop computer; using the simpler bucket scheme and
ignoring soil layers results in shorter calculation times. The model contains many parameterizations of phys-
ical processes, for example, new snow density, snow viscosity, and snow metamorphism, mostly determined
by field or laboratory experiments. Although over 100 parameters are present in the model, typically only
the surface roughness length, which strongly influences turbulent fluxes, needs to be specified. For Weiss-
fluhjoch and Col de Porte, roughness lengths of 0.002 and 0.015 m, respectively, were chosen, identical to
Wever et al. [2014].

3.2. Performance Measures
What should be considered the optimal model often changes depending on the choice of evaluation data
and performance measure [Essery et al., 2013; Kavetski and Fenicia, 2011]. We therefore assess the model
performance using a suite of different observations and goodness of fit measures relevant for hydrological
applications.

3.2.1. Kling-Gupta Model Efficiency
We measure the goodness of fit between simulations and observations using the Kling-Gupta efficiency
[Gupta et al., 2009]. This statistic was selected because it can be decomposed into a correlation term, a bias
term, and a variability term. We compute the KGE-statistic, which has its optimum value at unity, using the
modifications introduced by Kling et al. [2012]:

KGE512

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr21Þ21ðb21Þ21ða21Þ2

q
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b5
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(2)

a5
CVs

CVo
(3)

where r is the correlation coefficient, l is the average, CV is the coefficient of variation, and the subscripts s
and o represent simulations and observations, respectively. We compute the KGE for each site separately
for the variables snowpack runoff, snow mass, snow depth, and snow surface temperature. In some analy-
ses, we compute the combined performance for both sites by averaging the site specific efficiencies. Addi-
tionally, we also analyze the combined performance for several of the above mentioned variables by
computing their average efficiency. Thus, we give both sites and the individual variables equal weight
although the length of the data records varies slightly between the two locations.

3.2.2. Contingency Tables and Gerrity Skill Score
For flood forecasting, hydrological models should robustly capture flows in relevant categories, particularly
during extreme events. Deviations between observed and measured flow that equally influence model effi-
ciency measures as those presented above, do not necessarily bear equal importance to operational water
managers. Based on the lysimeter data, we define four categories of flow conditions denoted as dry, low,
medium, and high to evaluate situational model performance. We define the separation between the four
categories using the 75th, 90th, and 99th percentiles of observed discharge (Figure 1). The limit separating
the dry and low flow category was chosen rather high because the lysimeter at Col de Porte exhibits low
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degrees of melt throughout winter (Figures 1b and 1d). By using the defined classes, we can construct con-
tingency tables for interpreting the ability of the models to reproduce the observed flows [Yossef et al.,
2012] by flow class. To quantify the overall performance, we compute the Gerrity-Score (GS), which is a mul-
ticategory contingency score measuring the correspondence between simulations and observations [Gerr-
ity, 1992; Yossef et al., 2012]. This score varies between unity for perfect match and zero indicating no-skill
(random or constant forecast). The score rewards hits within less likely categories higher than within proba-
ble categories. At the same time, large forecast errors (e.g., predicting low but observing high flow) are pun-
ished harder than smaller errors (e.g., predicting medium but observing high flow).

4. Results and Discussion

4.1. Relationship Between Model Complexity and Performance
In this study, we measure model complexity by counting the number of parameters used in the different
JIM configurations (see Table 1). Note that, unlike the temperature-index model, none of these parameters
were calibrated. In this and the following section 4.2, a combined analysis of data from both sites is pre-
sented. The highest KGE increases quicker with model complexity for runoff and snow mass than for snow
depth (Figures 2a–2c), and even decreases slightly for snow surface temperature with increasing number of
parameters (Figure 2d). For runoff and snow mass, the efficiency appears to reach an upper limit as the
number of parameters increases without additional improvement by added complexity. For the most
parameter-rich JIM configurations, KGE even decreases slightly for both runoff and snow depth (Figures 2a
and 2c). At the same time, the lowest KGE increases with the number of parameters, foremost for runoff
and snow mass (Figures 2a and 2b) reducing the spread in model performance throughout the different
JIM configurations. The remaining large spread for the parameter-rich configurations indicate that a model
with high complexity does not guarantee good performance. However, note also that the number of possi-
ble configurations decreases for low or high numbers of parameters. The combined model performance for
runoff and snow mass indicates that complex models are not absolutely necessary for hydrological applica-
tions requiring daily values of those variables (Figure 2e); models with about 16 parameters seem to suffice
to reach optimum model performance. When including snow depth into the combined performance mea-
sure only the more parameter-rich models show optimal performance (Figure 2f). In many cases, snow
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Figure 1. Cumulative distribution functions of (a and b) 24 h and (c and d) 6 h runoff sums observed by the snow lysimeter at the two
experimental sites. The dashed lines indicate the 75th and 90th percentiles. The extreme right of the graph shows the 99th percentile of
the distribution.
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depth is used for assimilation into models [Brown et al., 2003; Liu et al., 2013]. In such applications, models
require an appropriate level of complexity to accurately depict snow density in order to obtain reliable esti-
mates of snow mass from measurements of snow depth.

For most variables, SNOWPACK and the best JIM configurations reach similar performance (Figure 2) even
though they differ greatly in their description of internal snowpack structure (see section 3.1). Otherwise,
both models are very similar, particularly how they compute the energy transfer between the atmosphere
and the snowpack. Therefore, other factors than the model formulation of the internal snowpack structure
appear to limit model performance. Likely maximum model performance is limited by errors in input and
evaluation data as well as deficiencies in the formulation of the surface heat exchanges.

Both temperature-index models were calibrated using only snow mass observations and provide results for
this variable with only slightly lower efficiency than the physically based models (Figure 2b). For simulating run-
off, however, the temperature-index models differ in performance with only TI-VDDF approaching the perform-
ance of the best JIM configurations and SNOWPACK (Figure 2a). Thus, including seasonal variations in the melt
parameter increases the model performance of the degree-day method as already suggested by Rango and
Martinec [1995]. Nevertheless, even though it is known that a constant melt parameter deteriorates the model
efficiency for runoff many studies still apply this method [e.g., Walter et al., 2005; Warscher et al., 2013]. Thus, for
a high performance, an appropriate use of a model seems more important than high model complexity.

To summarize, for daily values of runoff and snow mass, all model types can provide simulations with high
model performance except for the simplest temperature-index approach which displays lower efficiency for
runoff (Figures 2a, 2b, and 2e). The number of parameters and the run-time, on the other hand, differ largely
between the model types (Table 2). The complex snow-physics model requires much longer computation
time than the two other types of models and includes many more parameters. The temperature-index model
runs faster than JIM and SNOWPACK, and relies on fewer input variables but requires site-specific calibration.

Figure 2. Model performance, measured by the Kling-Gupta efficiency (equation (1)), for daily values and averaged for both sites plotted against number of parameters for the complete
set of JIM configurations (gray dots). SNOWPACK (red dashed line) and TI-VDDF (green solid line) achieve results with performance similar to the best JIM combinations. However, TI-
CDDF (blue dash-dotted line) shows lower performance for runoff than the JIM configurations with high model efficiency. SNOWPACK and the temperature-index models are shown as
horizontal lines for clarity since their number of parameters differs largely from JIM.
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Since all model types seem capable of providing daily runoff and snow mass simulations with similar quality,
model choices will depend on data availability, computer resources, and run time constraints.

4.2. Relationship in Performance Between Variables
Many hydrological applications in cold regions require snowpack runoff predictions without any need for
forecasting other variables such as snow depth. However, most studies evaluating snow models use such
auxiliary data [Carrera et al., 2010; De Michele et al., 2013; Schmucki et al., 2014] which may not be a good
indicator of snowpack runoff and therefore not valuable for selecting models for hydrological applications.
We find that model configurations which reproduce snow mass with high KGE also tend to produce accu-
rate runoff simulations (Figure 3a). However, even when a model shows high agreement with the snow
mass observations, there is still considerable variation in runoff performance. Furthermore, the KGE values
for runoff correlate weakly with both the KGE values for snow depth and snow surface temperature (Figures
3b and 3c). This result agrees with earlier studies showing that high model performance for one variable
can be achieved even though other variables may not be adequately represented [Bloschl et al., 1991]. In
particular, a wide range of JIM configurations reproduce daily snowpack runoff with high KGE, but show
large variations in performance for capturing snow depth (Figure 3b). It seems as if the choice of snow den-
sity model does not largely influence the ability of the models to reproduce the daily runoff observations.
Thus, snow depth observations alone are not a critical measure for testing the reliability of snow models for
hydrological applications requiring daily time steps. The same conclusion also appears valid for snow sur-
face temperature observations.

From the analysis above, we find that model configurations which reproduce snow mass with high effi-
ciency also tend to perform well for runoff. However, a considerable variation in runoff performance still
remains for JIM configurations which capture snow mass with high efficiency (Figure 3a). For a subset of
model configurations which reproduce snow mass accurately (the 20% of JIM configurations with highest
KGE for snow mass), three different process representations show systematic influences on the runoff
model performance (Figure 4). First, the more complex albedo formulations (options 0 and 1) provide runoff

Table 2. Simulation Performance for Daily Values of Runoff and Snow Mass for the Different Model Types Including Number of
Parameters and Model Run-Timea

Model
KGE for
Runoff

KGE for
Snow Mass

KGE for Runoff
and Snow Mass

Number of
Parameters

Approximate
Run-Time (s)

TI-CDDF 0.66 0.85 0.76 3 0.01
TI-VDDF 0.78 0.86 0.82 4 0.01
JIM 0.81 0.87 0.84 16 0.3
SNOWPACK 0.81 0.89 0.85 >100 190

aThe JIM configuration with the best performance for snowpack runoff. The number of parameters in SNOWPACK was only counted
for the seven processes listed in Table 1.
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Figure 3. Relationships between model performance, given by the KGE-statistic, for daily runoff against snow mass, snow depth, and snow surface temperature, respectively. The model
efficiency was computed for each site separately and afterward averaged between the sites for each JIM configuration.
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simulations with similarly high performance (see Table 1 for a summary of the processes and parameteriza-
tions in JIM). On the other hand, none of the model configurations that included the simplest albedo formu-
lation (option 2) were in the top 20% of snow mass performing models. Second, the formula for calculating
turbulent heat exchange using a constant exchange coefficient (option 2) produces better runoff simula-
tions than the methods taking atmospheric stability into account (options 0 and 1). Third, using either one
of the two bucket model options (options 0 and 1) for describing snow hydraulics gives the best results,
compared to not including water retention in the snowpack (option 2). Finally, the choices of parameteriza-
tions in JIM for the remaining processes, for example, snow cover fraction and new snow density, do not
seem to influence the quality of daily runoff predictions provided the model captures snow mass with suffi-
cient accuracy (results not shown).

4.3. Relationship in Model Performance Between the Sites
The model performance for the different JIM configurations shows a positive correlation between the two sites
for runoff, snow mass, and snow depth (black and gray dots in Figures 5a, 5b, and 5c). Figure 5d shows that
for snow surface temperature, the models using a stability correction (options 0 and 1 represented by gray
dots) perform better for Col de Porte than the models relying on a constant exchange coefficient (option 2 rep-
resented by black dots). For the performance of snow surface temperature at Col de Porte, our results differ
from those presented by Essery et al. [2013] who judged the model performance using root mean squared
error. However, our results become similar to the previous study if applying the same error measure. This
example illustrates that the performance criteria for evaluating simulations can certainly influence model
assessments. In contrast to Col de Porte, at Weissfluhjoch, the configurations using the simpler turbulence
scheme (option 2) provide the highest model efficiency for snow surface temperature (Figure 5d). The SNOW-
PACK model, which employs the Monin-Obukhov formulation for surface heat and moisture fluxes, follows the
behavior of the best performing JIM configurations which also use stability corrections for the turbulent fluxes.
Thus, the methods for computing the turbulent heat and moisture exchange appears to lack transferability
between the sites, indicating a potential for improving the energy-balance approach. However, reducing the
uncertainty in the computations of this energy-balance component is difficult since we largely lack direct
observations of the turbulent energy exchange over closed snow cover at different locations [Stoessel et al.,
2010].

4.4. Variation in Model Performance for Runoff Between Years
The model efficiency, computed for each year and model separately, varies over time for all model types
(upper plot in Figures 6 and 7). In many years, the differences in performance between the models seem
small; in some winters, all models agree well with the observations whereas in other winters, all models
reproduce the measurements poorly. Indeed, the yearly KGE-statistic shows a positive correlation, ranging
from 0.86 to 0.96 for Col de Porte and from 0.65 to 0.96 for Weissfluhjoch, between the three model types
(the best JIM configuration, SNOWPACK, and TI-VDDF). The high correlation indicates that one or more
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Figure 4. Box plots showing the model performance for runoff depending on the choice of parameterization for three different processes. The plots only show configurations which
match the snow mass observations with high model efficiency (the 20% of JIM configurations with highest KGE for snow mass). The numbers above the box plots indicate the number
of times each option was selected.
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confounding factors influence the ability of all models to reproduce daily runoff. SNOWPACK (Figure 7a, red
line) shows slightly better performance than the best JIM configuration (Figure 7a, blue line) and TI-VDDF
(Figure 7a, green line). TI-VDDF shows the most variable results, with the highest performance in several
years but also often the worst model efficiency in other years. The best JIM configuration shows the most
consistent results, seldom outperforming the other models and at the same time rarely producing the worst
results in individual years. For both sites, the yearly best performing JIM configuration (Figures 6a and 7a,
black dashed line) outperforms the other models for most of the years. By applying an appropriate model
averaging technique [i.e., Rings et al., 2012] more reliable snowmelt predictions including uncertainty esti-
mates may be generated from an ensemble of well-performing JIM configurations.

At both sites, the model performance often seems to deteriorate due to a mismatch between the simulated
mean runoff and observed mean runoff (Figures 6c and 7c). In particular for Col de Porte, the simulations
show lower runoff than the observations for most winters after 1999–2000. Before this winter, precipitation
was adjusted to match manually observed amounts of new snow, and later on corrected for undercatch
using wind speed and air temperature measurements [Morin et al., 2012]. Thus, the method for correcting
the precipitation measurements may have influenced the simulation quality. In general, the mismatch
between simulated and observed runoff amounts, which is mostly independent of the model type, shows
the importance of providing accurate precipitation input data to the models.

Figure 5. Correlation in model performance, measured by the KGE-statistic, between the two sites for four variables. The gray dots show the
model configurations using the surface exchange schemes including atmospheric stability corrections (options 0 and 1), whereas the black
dots show configurations using a constant exchange coefficient (option 2). The red dot indicates the SNOWPACK model results and the green
dot indicates the TI-VDDF model results. Note that TI-VDDF does not simulate snow depth and snow surface temperature.
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4.5. Evaluation of Runoff Simulations in Categories
The contingency tables show that all three model types capture daily snowpack runoff with similar hit rates
(Table 3). All models display many hits in the dry category due to the simple prediction of nonmelting con-
ditions occurring during cold periods. In this category, depending on model and site, between 91.0% and
94.6% of the events were correctly simulated by the models. For the remaining categories, all models show
many misses indicating the difficulty of predicting snowpack runoff within those categories robustly. For
those classes, the fraction of hits within each category varied between 28.1% and 82.1% depending on
model and site. The models show a slightly lower ability to capture the runoff in categories for Col de Porte
than Weissfluhjoch. At Col de Porte, between 82.2% and 84.6% of all observed events were correctly cap-
tured by the simulations, whereas the corresponding number for Weissfluhjoch varied between 84.9% and
88.5%. All model types fail to forecast approximately half or more of the events observed in the high flow
category. Depending on model and site, only between 28.1% and 51.4% of the observed high flow events
were captured by the simulations with the lowest hit rate obtained by TI-VDDF at Col de Porte. For high
flows at Weissfluhjoch, JIM and SNOWPACK show fewer false alarms than TI-VDDF. Both JIM and SNOW-
PACK show similar results for the high flow events.
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Figure 6. Model performance for daily runoff computed for each year individually at Col de Porte for the overall best performing JIM
simulation (blue line), yearly best JIM results (black dashed line), SNOWPACK (red line), and TI-VDDF model (green line). The model
performance is judged by the modified Kling-Gupta efficiency and its decomposition into the correlation coefficient (r), the ratio
between the mean of the simulation and the mean of the observations (a), and the ratio between the coefficients of variation for sim-
ulations and observations (b).
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Visual inspection of the single observed events in the high flow category (data not shown) reveals that
some of the misses occur during late-spring when the simulations show too early snow disappearance and
that others occur during rain-on-snow events. Our study confirms earlier results which show the difficulty of
accurately predicting runoff around the date for melt-out [e.g., Jin et al., 1999] and snowpack outflow during
rain-on-snow events [e.g., Barry et al., 1990]. Finally, the lysimeter data might not be representative of the
point-simulated runoff totals due to lateral and preferential water flow paths in the snowpack [Kattelmann,
2000; Wever et al., 2014].

The three different model types show skill (Gerrity-Score) in reproducing daily snowpack runoff (Table 4).
Overall, the simulations show higher skill in capturing the categorical events at Weissfluhjoch than at Col de
Porte. The main reason for this behavior is the simpler prediction of runoff from the thicker high-alpine
snowpack not prone to the mid-winter freeze/thaw cycles encountered at the lower elevation site. The
physically based models seem to outperform the temperature-index model, and SNOWPACK shows higher
skill than JIM. For Weissfluhjoch, the difference between SNOWPACK and JIM is lower than for Col de Porte.
The difference in skill between those two models may arise for at least two reasons. First, SNOWPACK was
driven using measured albedo whereas JIM was driven with simulated albedo. Second, the SNOWPACK
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Figure 7. Model performance for daily runoff computed for each year individually at Weissfluhjoch for the overall best performing JIM
simulation (blue line), yearly best JIM results (black dashed line), SNOWPACK (red line), and TI-VDDF model (green line). The model
performance is judged by the modified Kling-Gupta efficiency and its decomposition into the correlation coefficient (r), the ratio
between the mean of the simulation and the mean of the observations (a), and the ratio between the coefficients of variation for simu-
lations and observations (b).
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version [Wever et al., 2014] used in this study includes a detailed description of water transport through
snow which is not included in JIM.

Very few previous studies have evaluated long-term simulations of snowpack runoff against snow lysimeter
observations [e.g., Wever et al., 2014]. In other studies, such comparisons have been made, but for much
shorter periods and without the use of several complementary performance measures [e.g., Albert and Kraje-
ski, 1998; Barry et al., 1990; Foerster et al., 2014]. For practical applications, the use of different skill measures
as presented in this study can provide information about several relevant aspects of the model behavior.
For example, the ability of models to predict flooding events has not been thoroughly assessed in earlier
snow model intercomparison projects. Thus, we encourage future studies to follow and extend the analysis
presented here using multiple performance metrics and skill measures.

4.6. Evaluation of Daily and Subdaily Runoff Predictions
For flood forecasting of large watersheds, running a hydrological model at a daily time step should suffice. For
such a time step, both JIM and SNOWPACK reproduce the observed lysimeter runoff with similar performance
(Figure 8). In general, these models perform slightly better at Weissfluhjoch than Col de Porte likely because
the snowpack at the lower elevated site undergoes more melt events during mid-winter than at the high
alpine site. As pointed out above, some of the deviations between simulations and observations may arise
due to, for example, lateral flows in the snowpack influencing the lysimeter measurements. Another cause for
those deviations can be the spatial variability of the snow cover. The site Col de Porte is equipped with two
lysimeters. Those two lysimeters show mutual agreement (RMSE 5 5.6 mm/24 h, r 5 0.87, KGE 5 0.83,
GS 5 0.77) which is only slightly better than the agreement between the simulations and observations pre-
sented in Figure 8. Thus, even with error free lysimeter observations, we should not expect a perfect match
between the observation and simulation results due to spatial variability of the snow cover.

For reliable flood forecasting of small watersheds, hydrological models require shorter time steps than for
larger catchments. For subdaily time steps, SNOWPACK shows higher performance than JIM (Figure 9).
SNOWPACK includes a detailed description of liquid water transport through the snowpack whereas JIM

represents this process with a so-called bucket approach.
For shorter periods than those presented here, JIM reprodu-
ces the observations with even lower performance (data
not shown). Wever et al. [2014] showed that physically
based methods using Richards equations outperformed
snowpack runoff simulations using simple bucket
approaches for hourly observations. Thus, more effort
should be invested in improving and testing the description
of liquid water transport through the snowpack in JIM to
increase the model performance for short time steps.

Table 3. Categorical Contingency Tables for Dry (D), Low (L), Medium (M), and High (H) Flow Separated by the 75th, 85th, and 99th
Percentiles of Observed Daily Snowpack Runoffa

Col de Porte Weissfluhjoch

Simulations D 2146 112 25 2 2378 102 10 0 JIM
L 206 289 77 3 188 339 46 2
M 5 67 172 16 25 65 246 19
H 0 0 9 11 0 1 6 14

SNOWPACK
D 2164 101 29 3 2451 100 21 2
L 185 315 82 1 126 324 24 1
M 8 52 164 15 14 83 253 14
H 0 0 8 13 0 0 10 18

D 2154 148 15 2 2393 153 5 0 TI-VDDF
L 190 271 114 6 170 287 56 0
M 13 48 146 15 26 65 223 18
H 0 1 8 9 2 2 24 17

D L M H D L M H
Observations

aSee also Figure 1.

Table 4. Gerrity-Score Computed for the Two Sites
Individually and Combined for the Three Different
Model Types

Col de
Porte Weissfluhjoch

Average of
Both Sites

JIM 0.57 0.66 0.62
SNOWPACK 0.59 0.71 0.65
TI-VDDF 0.51 0.67 0.59
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5. Summary and Conclusions

In this study, we compare and evaluate three different types of snow models with a focus on hydrological
applications:

1. The temperature-index method represented by two different implementations, one using a constant
degree-day factor (TI-CDDF) following, e.g., Warscher et al. [2013] and one including a seasonally varying
degree-day (TI-VDDF) following, e.g., Slater and Clark [2006].

2. A multimodel framework (JIM) providing an ensemble of snowpack energy-balance models with varying
complexity depending on the selection of process representations [Essery et al., 2013].

3. A complex snow-physics model (SNOWPACK) with a detailed description of the layered snowpack [Bartelt
and Lehning, 2002; Wever et al., 2014].

Our selection of models covers a large range of existing snow models. We evaluated the models at two sites in
the European Alps at mid and high-elevations using high quality long-term recordings of input and validation
data.

In our study, for daily predictions of snowpack runoff and snow mass, model complexity is not a determi-
nant for high model performance. The best JIM configurations and SNOWPACK, as well as the temperature-

Figure 8. Scatter plots showing simulated against observed 24 h sums of lysimeter runoff.

Water Resources Research 10.1002/2014WR016498

MAGNUSSON ET AL. SNOW MODEL EVALUATION 14



index method including a variable melt factor can provide similar model efficiency (Figure 2) and similar
ability to reproduce high runoff events (Tables 3 and 4). For daily runoff and snow mass, the ensemble of
JIM models provided a model performance with a Kling-Gupta efficiency for individual models approxi-
mately ranging from 0.41 to 0.84 (Figure 2). For testing whether new model developments provide addi-
tional skill, the JIM ensemble provides an excellent benchmark.

JIM results show that models which reproduce snow mass accurately also tend to capture snowpack
runoff with high performance (Figure 3a). On the contrary, clear relationships were missing when
comparing model performance for snowpack runoff with snow depth and snow surface temperature
(Figures 3b and 3c). Thus, our study suggests (a) that modeling daily snowpack runoff reliably does
not require very accurate snow density and snow surface temperature simulations, and (b) that many
frequently observed variables (e.g., snow depth) provide only limited information for evaluating snow
models intended for hydrologic applications. These conclusions though are based on data from two
alpine sites. Site-specificity and potential surface-temperature compensations within the turbulent
exchange parameterizations deserve consideration in interpreting these results. Different conditions,
such as sites with thin, cold, low density snow covers, or other areas where turbulent exchanges are

Figure 9. Scatter plots showing simulated against observed 6 h sums of lysimeter runoff.
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more dominant might be more sensitive to accurate portrayals of snow depth, density, and surface
temperature.

All model performance measures for snow mass, snowpack runoff, and snow depth exhibit a positive corre-
lation between the two sites (Figures 5a–5c). Performance measures for snow surface temperature, how-
ever, did not exhibit the same between-site correlation (Figure 5d). The methods for computing the
turbulent heat fluxes, which is the least validated component in the snowpack energy-balance, greatly influ-
ences the snow surface temperature (Figure 5d) and snowpack runoff simulations (Figure 4b). Thus, more
studies should focus on reducing the uncertainty in the simulation of this energy-balance component,
which would require direct measurements of turbulent heat exchange over snow [e.g., Helgason and Pom-
eroy, 2012; Mahat et al., 2013; Reba et al., 2014].

The ability to reproduce daily runoff varied strongly between the years but simultaneously for all different
model types (Figures 6 and 7). Inaccurate precipitation input data or nonrepresentative snowpack runoff
data appears to have degraded the validation of all models in some years. While model development seems
to receive more attention than acquiring accurate input and validation data, our results suggest that both
are necessary at the same time to further advance existing modeling approaches.

Our study demonstrates that for snowpack runoff predictions at daily timescale, an appropriately set up
energy-balance model with a simplified snowpack structure can provide nearly identical performance as a
much more complex snow-physics model (Figure 8). Even at 6 h time scale, the model efficiencies can be
similar (Figure 9). Energy-balance models with a simplified snowpack structure have a much shorter run-
time and include far fewer parameters than the snow-physics model (Table 2). Thus, for many applications,
this simpler model type may constitute the optimal trade-off between model performance, computational
constraints, and model complexity limits required by data assimilation frameworks [e.g., Magnusson et al.,
2014; Slater and Clark, 2006]. However, we could show that an appropriate combination of process repre-
sentations is mandatory to achieve a high model performance with this type of model. The JIM multimodel
framework of energy-balance models used here provides an excellent tool for identifying appropriate
model structures, i.e., the correct combination of parameterizations. Such inferences are less straightforward
to make in typical model intercomparison studies [i.e., Etchevers et al., 2004] due to intermodel differences
in numerical schemes and parameter values masking the influence of differences in the parameterizations
themselves. In this study, we demonstrated the model selection process with regards to snow hydrological
applications. We suggest using such a framework to optimize specific model applications under given
boundary conditions such as data availability, properties of interest, and computational constraints.
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